skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. Free, publicly-accessible full text available January 19, 2026
  3. A novel two-photon direct laser writing-based hybrid strategy for 3D nanoprinting microfluidic vessels with sophisticated 3D architectures and custom-designed micropores. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  4. Abstract The Sc2.0 global consortium to design and construct a synthetic genome based on theSaccharomyces cerevisiaegenome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp syntheticSaccharomyces cerevisiaechromosomesynXVIof the Sc2.0 project. Application of the CRISPR D-BUGS protocol identified defective loci, which were modified to improve sporulation and recover wild-type like growth when grown on glycerol as a sole carbon source when grown at 37˚C. LoxPsym sites inserted downstream of dubious open reading frames impacted the 5’ UTR of genes required for optimal growth and were identified as a systematic cause of defective growth. Based on lessons learned from analysis of Sc2.0 defects andsynXVI, anin-silicoredesign of thesynXVIchromosome was performed, which can be used as a blueprint for future synthetic yeast genome designs. Thein-silicoredesign ofsynXVIincludes reduced PCR tag frequency, modified chunk and megachunk termini, and adjustments to allocation of loxPsym sites and TAA stop codons to dubious ORFs. This redesign provides a roadmap into applications of Sc2.0 strategies in non-yeast organisms. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  5. The Technology Ambassador’s Program (TAP) was established in 2012 as an extra-curricular program and has been offered as a service learning course since spring 2016. To investigate the impact on program participants, we launched a longitudinal study in fall 2022 and surveyed the students who completed the course from spring 2016 to spring 2021. Analysis of the survey results discovered that students strongly agree that this program has provided them opportunities to conduct research, to network with other professionals in the field, and apply technical skills. Further analysis also revealed a strong correlation of these opportunities with improving soft skills and career readiness among participants. Overall, this program increased the confidence of the students and prepared them to learn new skills on their own. This paper describes the overall structure of the service learning program and presents the details of this study including the process and survey results. 
    more » « less
  6. This Tutorial Review highlights strategies for leveraging the micron-to-submicron-scale additive manufacturing technique, “direct laser writing”, to enable 3D microfluidic technologies. 
    more » « less
  7. Sinharay, Sandip (Ed.)
    Diagnostic classification models (DCMs) have seen wide applications in educational and psychological measurement, especially in formative assessment. DCMs in the presence of testlets have been studied in recent literature. A key ingredient in the statistical modeling and analysis of testlet-based DCMs is the superposition of two latent structures, the attribute profile and the testlet effect. This paper extends the standard testlet DINA (T-DINA) model to accommodate the potential correlation between the two latent structures. Model identifiability is studied and a set of sufficient conditions are proposed. As a byproduct, the identifiability of the standard T-DINA is also established. The proposed model is applied to a dataset from the 2015 Programme for International Student Assessment. Comparisons are made with DINA and T-DINA, showing that there is substantial improvement in terms of the goodness of fit. Simulations are conducted to assess the performance of the new method under various settings. 
    more » « less
  8. Abstract Functionally gradient materials emulate nature's ability to seamlessly blend properties through variations in material composition, unlocking advanced engineering applications such as biomedical devices and high‐performance composites. Additive manufacturing, particularly stereolithography, enables sophisticated 3D geometries with diverse materials. However, current stereolithography‐based multi‐material 3D printing is constrained by time‐intensive material switching and compromised interfacial properties. To overcome these challenges, we present dynamic fluid‐assisted micro continuous liquid interface production (DF‐µCLIP), a high‐speed multi‐material 3D printing platform that integrates varying compositions in a fully continuous fashion. By utilizing the polymerization‐free “dead zone”, vliquid resins are seamlessly replenished within a resin bath equipped with dynamic fluidic channels and a synchronized material supply system. DF‐µCLIP achieves ultra‐fast printing speeds of 90 mm/hour with 7.4 µ m pixel‐1 resolution while enabling on‐the‐fly material transitions. This strategy enhances mechanical strength at multi‐material interface through entangled polymer networks and promotes seamless material transitions between distinct materials ilike fragile hydrogels and rigid polymers, addressing interfacial failure caused by mismatch of swelling behavior. Additionally, dynamic material replenishment with real‐time composition control enables continuous gradient printing instead of the conventional step‐wise controlled gradient. Demonstrations include polymers with gradient color transitions and gradient carbon nanotube (CNT) composites with seamlessly varying conductivity. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026